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Abstract: Fuzzy C-means (FCM) has widely been applied to computer vision, which emerged as an 
important tool for segmenting the structure of image data. However, the effectiveness of this 
technique lies in its inability to preserve edges and suppress noise, often leading to unsatisfactory 
segmentations. To solve this problem, we derive a modified FCM algorithm by using guided filter. 
The first key concept of our method is its linear translation-variant filtering process, which exploits 
edge-preserving smoothing property to preserve the edge structures in segmentation. The second is 
that this technique improves the robustness to noise by incorporating the spatial information into the 
objective function, which are obtained by the mean output of guided filtering. The main advantages 
of the proposed method are that it exhibits robustness to edge-preserving and noise and it can 
enhance the segmentation accuracy. Experimental results on both synthetic and real remote-sensing 
images suggest that the proposed method behaves well in segmentation performance. 

1. Introduction 
Image segmentation is the process of partitioning an image into meaningful regions, which has 

emerged as an interesting alternative for diverse applications in computer vision. In remote sensing, 
a segmentation method should leverage the advances made in data acquisition, specifically the 
spectral and spatial resolution capability [1]. Fuzzy c-means (FCM) is one of the most widely used 
methods in image segmentation, and it is generally more flexible than the corresponding 
hard-clustering algorithms [2-14]. Among FCM based methods, the kernelized fuzzy C-means 
(KFCM) algorithms have received an enormous amount of attention [7-15]. The KFCM algorithms 
maps image points from the input space to a higher dimensional feature space using a kernel 
function. Although good performances have been achieved in the development of FCM-based 
algorithms, the edge-preserving denoising remains a largely unsolved problem. The main difficulty 
with image segmentation in this way is that these techniques are very sensitive to noise and are hard 
to maintains the clear image edges [4, 8, 11, 13, 15]. 

Filtering has been widely used in computer graphics, imaging and vision for many different 
applications. In particular, the guided filter [15] is one of several popular algorithms for 
edge-preserving smoothing whose computational complexity does not depend on the filter size. It 
can effectively smooth the region with noise and produce visually pleasing edge profiles. Guided 
filter gives better output near the edges than that of bilateral filter. So, it is an important technique 
for various image processing and computer vision applications such as feature extraction and target 
recognition. Considering one of segmentation tasks is to suppress noise and emphasize important 
structure features, we conduct fuzzy clustering by incorporating guided filtering into the objective 
function of KFCM in the processing of image segmentation. Our intuition is that if guided filter can 
effectively suppress gradient-reversal artifacts and produce visually pleasing edge profiles, we can 
get more accurate segmentation when segmenting image with KFCM. Experimental results 
demonstrate the effectiveness of the proposed algorithm. 

The rest of this paper is organized as follows. Some related works are described in Section II. 
Section III includes details on the guided segmentation algorithm. Experimental results of the 
proposed algorithm are given in Section IV. Concluding remarks are provided in the final section. 
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2. Generalized Fuzzy C-Means Clustering Algorithm 
2.1 Fuzzy C-Means 

Fuzzy C-Means (FCM) is a method of clustering which allows one piece of data to belong to two 
or more clusters, which assigns a degree of membership for every class using a fuzzy membership 
[2]. Basically, the FCM method includes three basic operators: the fuzzy membership function, 
partition matrix and the objective function. Given the cluster number C and a dataset { } 1

N
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where m is any real number greater than 1, ⋅ stands for the Euclidean norm,U is the membership 
function containing iku and [ ]jV v= denotes cluster centers. Using the Lagrange multiplier method, 
we may obtain a local minimum for J if we updateU andV alternatingly according to the algorithm 
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2.2 Kernelized Fuzzy C-Means 
To capture nonlinear relationships among data, kernel tricks perform an arbitrary nonlinear 

mapping Φ from the original feature space to a space of higher 
dimensionality : ( ( ))X F x xFF → → [9, 10]. The kernel method then takes advantage of the fact 
that dot products in the kernel space can be expressed by a Mercer kernel K given 
by T( , ) ( ) ( )K x y x yΦ Φ= [10]. This trick has been widely used in clustering, as shown in support 
vector clustering and fuzzy c-means algorithms. In this section, we describe a kernelized FCM 
(KFCM) algorithm with objective function as follows [9]: 

2

1 1 1
( , ) ( ) ( ) , s.t. 1 ,

N C C
m
ij i j ij

i j j
J U V u x v u iΦ Φ

= = =

= − = ∀∑∑ ∑                                    (4) 

where symbol ⋅ is the Euclidean norm, andΦ is an implicit nonlinear map. Through the kernel 
substitution, we get 
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Consider the Gaussian kernel 
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Eq. (5) can be rewritten as 2(1 ( , ))i jK x v− . From Eqs. (4-6), the objective function of KFCM can 
be simplified to 
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In a similar way to the standard FCM algorithm, the objective function J can be minimized under 
the constraint ofU . The optimization of the membership functionU and cluster centersV involve 
the use of the technique of Lagrange multipliers which leads to the expression 
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3. Guided Kernel Fuzzy C-Means Clustering with Spatial Information 
Guided filter [16] is defined as a general linear translation-variant filtering process, which 

involves a guidance image I , an input image p , and an output image q . The key assumption of the 
guided filter is that q is a linear transform of I : 

, ,i k i k kq a I b i w= + ∀ ∈                                                         (10) 

where i is the index of a pixel, and kw is a window which centered at the pixel k with a radius r . To 
determine the linear coefficients ( , )k ka b , the objective function that minimizes the difference 
between q and the filter input p in window kw is given by 
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whereε is a regularization parameter controlling the degree of smoothness. The solution of Eq. 
(11) is obtained by linear regression 
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Here, kµ and kσ are the mean and variance of I in the window k . The final output of guided filter 
is 

,i i i iq a I b= +                                                                (14) 

where ia andb are the average of a andb respectively on the window iw centered at i . 
In order to arm guided filter with the fuzzy clustering by incorporating spatial information, we 
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design our guided kernel fuzzy c-means clustering with spatial information (GKFCMS). We show 
that the processing of the original image by the guided smoothing technique can efficiently 
eliminate noise and superfluous structure. Following the strategy of [8], the objective function of 
GKFCMS algorithm is minimized using the following alternate iterations: 
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where ( )kG x denotes the guided filtering of a dataset { } 1

N
i i

X x
=

= , ( )kG x is the mean values 
of ( )kG x . 

4. Experimental Results 
4.1 General Setting 

To evaluate and compare the performance of the proposed GKFCMS with that of other 
FCM-based methods, the RFCM [5], KGFCMS [12] and ARKFCM [14] methods have been 
considered. We carry out segmentation experiments on one synthetic image and two real images. In 
this paper, we use the segmentation accuracy (SA) [17] as the evaluation indices. SA is defined as the 
sum of correctly classified pixels divided by the total number of pixels: 
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where c is the number of clusters, iA denotes the pixels belonging to the thi class found by 
algorithm, and iC denotes the pixels belonging to the thi class in the reference segmented image. 

4.2 Synthetic Image 
In this section, we conduct some experiments to compare the segmentation performance on the 

synthetic image. The advantage for using synthetic images rather than real image data for validating 
segmentation methods is that synthetic data includes prior knowledge of the true types and control 
over image parameters such as modality and noise. 

 
Fig.1. Comparison of segmentation results on synthetic image corrupted by Gaussian noise with 

0.01 variance 
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Fig.2. Comparison of segmentation results on synthetic image corrupted by Gaussian noise with 

0.02 variance 
The synthetic image is shown in the top left of Figs. (1-3), which contains a four-class pattern. In 

Figs. (1-3), we test the algorithms’ performance when the synthetic image corrupted by Gaussian 
noise with 0.01, 0.02 and 0.05 variance, respectively. What we can see in Figs. (1-3) is that RFCM, 
KGFCMS and ARKFCM are sensitive to noise, and the boundaries between different regions are 
not well defined. The results achieved by GKFCMS show that the region uniformity is good and the 
boundaries between regions are clear, while nearly all pixels are classified correctly so that the 
algorithm turns out to be robust to Gaussian noise. The segmentation accuracies in terms of SA 
obtained by considered methods for corrupted synthetic images are listed in Table 1. The SA of 
GKFCMS is significantly closer to 1 than the other algorithms. This suggests that the proposed 
algorithm outperforms the compared algorithms on this kind of test data. 

 
Fig.3. Comparison of segmentation results on synthetic image corrupted by Gaussian noise with 

0.05 variance 
Table 1 SAs of different methods on synthetic image corrupted by Gaussian noise 

Variance RFCM KGFCMS ARKFCM GKFCMS 
0.01 0.5459 0.5781 0.7381 0.9488 
0.02 0.5326 0.4614 0.7454 0.9487 
0.05 0.5366 0.4426 0.7716 0.9491 

4.3 Real Image 
Fig. 4 shows a comparison of segmentation results on a remote-sensing image (airport). The 

results of GKFCMS demonstrate that the region uniformity is good and the boundaries between 
regions are clear. The superiority of the proposed GKFCMS is observable in this figure. 
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Fig.4. Segmentation results on remote-sensing image (airport) 

 
Fig.5. Segmentation results on remote-sensing image (bridge) 

Fig. 5 presents a comparison of segmentation results between RFCM, KGFCMS, ARKFCM and 
GKFCMS methods, when applied on a remote-sensing image (bridge). Visually, RFCM, KGFCMS 
and ARKFCM cannot correctly classify the images, while GKFCMS acquire satisfying 
segmentation results. In this case, it could be observed from the results that GKFCMS could detect 
the main objects in the test image more effective than the other methods, and the boundaries 
between the true regions obtained by GKFCMS are well defined. 

The segmentation results of seven different compared algorithms on the third real remote-sensing 
image (river) are shown in Fig. 6. In this test image, GKFCMS maintains the clear image edges and 
the more details. Although there are still some isolated pixels, the region uniformity and the 
boundary localization of the GKFCMS are both satisfactory. 

 
Fig.6. Segmentation results on remote-sensing image (river) 

5. Conclusion 
In computer vision, image segmentation based on the fuzzy clustering is an important problem. 

In this study, we have introduced a new, robust and efficient method to segment remote-sensing 
images. The proposed algorithm takes advantage of the guided filter and the spatial information, 
which makes it capable of image segmentation whose structures are corrupted by noise. Although 
the number of clusters must be given a priori, the results obtained from our method are acceptable. 
Although the number of clusters must be given a priori, the results obtained from our method are 
acceptable. Our further and ongoing works include complex scene classification in our algorithms, 
adaptive determination for the clustering number and other applications. 
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